This entry details a portion of my thesis work at the University of Alaska Fairbanks, and is intended to communicate the findings of that work in a four part series. You are reading part two. In order to make the article concise, you may review the general background of this work in part one. I have truncated the background and methods of this work and focused on a portion of the results.
How do you get to a resource? Well, the simple answer is you “access” them. Depending on what you are trying to achieve, access may mean walking through the door of your local grocery store, driving onto a frozen lake and drilling a hole to jig up a fish, or driving a boat up a river to harvest a moose. The last example speaks directly to subsistence use patterns of communities in the Yukon Flats, Alaska. The objective of this part (specifically Chapter 1) of my study was quantify rural hunter access in Alaska.

Let’s take a step backward quickly to look at why access matters. Game levels are traditionally managed to create yield for hunters, but it is critical that game populations be accessible to hunters. In the huge area of Alaska, creating high game densities in a remote region may have minimal benefit to hunters. Outside of Alaska, the effect of access on game populations and hunter success is not well understood, but increased access in Ontario may decrease moose, increased access in Idaho may increase elk mortality, and hunters in Minnesota concentrate their efforts within 0.8 km of roads 98% of the time. These studies suggest that access is important, but within the Arctic access has not been quantified despite being important for hunters, particularly those with a subsistence lifestyle.
It is important that game managers understand how many animals are being harvested to aid in setting regulations. In Alaska, this is accomplished by reporting harvest via a “harvest tag”. However, under-reporting of harvest via the harvest tag system is high in the subsistence communities of the Yukon Flats. This is due to a variety reasons centering around culture practices and feasibility of reporting. Within those communities, moose hunters are allowed one bull moose per season, and hunting most often occurs along rivers in September and October.
To understand where moose hunters are harvesting moose, I used an interview dataset collected in 2005 and 2007 by the Council of Athabascan Tribal Governments. The interviews were in conducted in five subsistence communities including Fort Yukon, Beaver Creek, Circle, Arctic Village, and Birch Creek. In the interview process, interviewees recorded harvest locations of moose on a topographic map. Based on that we determined they utilized rivers, a hunting method that is well documented in other research. However, the data allowed me go beyond just determining river use. I wanted to know : how far were users traveling from their community and from the river to harvest moose?

I designed a method to quantify hunter access. I measured the straight-line distance of the harvest points from their community of origin, and the distance from the rivers. The idea behind this is that the hunter moved up river to a certain point, and then moved away from the river a certain distance. I grouped the resulting distances into five groups, and created a buffer around communities and rivers based on those distances. Within the buffers, I developed an “access index” with the goal of understanding the likelihood that a hunter would utilize an area. The access index was calculated as the number of points that fell inside of a buffer divided by the total number of points up to the edge of that buffer. So, based on that the maximum achievable value was 100% and either existed near community, or near the rivers. In effect, 100% means that 100% of the time, hunters were willing to travel that distance to harvest a moose.


The approach that I took was novel, and yielded some useful results. We found that on average hunters were traveling 0.9 ± 0.6 km from rivers and 47km ± 32km from their communities. Harvest was centered around rivers, and was happening most frequently near rivers. Some useful results!
There are a few ways that this model may be applied. First, I applied a region density of 0.0016 bull moose per square kilometer (remember, there are VERY low moose densities) to estimate the number of legal moose that are available to moose hunters. Based on hunter success of 27 – 46%, I estimated that 98 – 176 moose are harvested by hunters annually. Those numbers fell into the reasonable range of reported harvest in the region. Seeing as that’s the case, this method could help managers understand the amount of moose harvested, instead of relying on the extremely (regionally) variable harvest ticket system. Since this model enables an estimate of the number of animals taken around an access corridor, it could be used in other hunting systems where access is important. For instance in Alaska if a new road was created, how many moose would be harvested based on the new access. In Idaho, how many elk would be preserved if a road is closed?
Overall the results of this study have applicability within my study system, other subsistence systems in Alaska, and more broadly to regions where harvest of game is linked to access. It demonstrates a novel method, and the results that can be gained through an interview process. In the next portion of this series, I will be examining wolf movement in this same area, which yielded some great results.
*The entirety of this work is in review with the Journal of Human Dimensions of Wildlife
One thought on “Quantifying Rural Hunter Access in Alaska*”